(1)激光穿墙实验,也称为光子再生实验(Light Shining through Wall, 图6中标记为LSW)。由于光子和暗光子之间有振荡,所以光子在传播过程中有一定的几率转换为暗光子。实验从左边提供强激光,由一道墙体去除原来的光子之后,只有振荡成为暗光子才可以穿过墙体,并且再次转换为光子。最后,实验上就可以通过光子探测探测器来限制光子和暗光子的耦合系数ϵ。
图8:太阳暗光子直接探测实验示意图[15]。
(2)第二类实验将天体行星作为实验室[Stars as Laboratories for Fundamental Physics, 这是一本书]。它的主要思想是利用了天体行星内部的致密热环境,其内部的高能光子可以转化为暗光子。由于暗光子与可见物质的相互作用很小,它可以逃离致密的天体行星环境。因此,每一个天体行星都可以看作一个暗光子的源。
对于太阳来说,我们可以根据其耦合系数ϵ来计算来自太阳的暗光子单位面积流强代表实验为欧洲核子中心太阳轴子望远镜 (CERN Axion Solar Telescope),图6中标记为CAST。CAST实验采取了主动直接探测的办法。
另外,也可以采取被动的方式来限制暗光子。由于暗光子的逃逸,带走了天体行星的能量,因此会扰乱天体行星的正常演化。一个简单的标准是暗光子带来的能量流失速率要低于天体行星本身通过光子的散热速率(亮度)。人们使用太阳、水平支恒星、红巨星等天体来限制暗光子的耦合系数强度,在图6中标记为Solar、HB、RG[14]。
(3)库仑力实验(图中标记为Cavendish-Coulomb)
:暗光子的存在可以修改我们熟知的库仑定律