在弦论中,基本的对象是1维的”弦”。弦在时空里的运动用一个2维的轨迹来描述,这个轨迹称为世界叶(worldsheets),所以世界叶的每一点都用此点在时空里的位置来标记。于是,可以这样来构造弦论,即把它作为从2维的黎曼曲面到时空流形 M 的映射的量子场论。对这个2维的曲面应该赋以一个黎曼度量,而可供考虑的黎曼度量形成了一个无限维空间。这意味着我们必须在2维中解决量子引力的问题——这个问题和它的4维的同伴一样,太难了。然而,如果2维的世界叶理论是共形的(即在局部的尺度变换下是不变的),则留下的就只是一个共形不等价度量的有限维空间,而这个理论就能适当地定义。
卡拉比–丘条件就是从这样的考虑中产生的。要求2维理论是共形的,使得弦论有意义、实质上就是要求时空的里奇张量为零。这样,2维条件引导出一个时空方程,而且恰好就是无物质的爱因斯坦方程。对这个条件还要再加上一个”唯象的”判据,即这个理论应该具有“超对称”,就是要求时空流形M是复流形。这两个条件合在一起意味着 M 是一个以 SU(n)为完整群的复流形,就是一个卡拉比–丘流形。根据丘成桐的定理,这种M的选择很容易用代数几何的方法来描述。